Elastic cloud–IoT architecture for smart city traffic management: Performance, energy efficiency, and real-time analytics

Authors

https://doi.org/10.22105/sci.v2i2.37

Abstract

Rapid urbanization and increasing vehicle population have led to severe traffic congestion and pollution in modern cities. Smart city initiatives leverage Internet of Things (IoT) technology to address these challenges and optimize traffic management systems. This paper explores the role of cloud computing in enhancing IoT-based traffic management by providing scalable data processing, real-time analytics, and intelligent decision-making capabilities. Cloud platforms enable seamless integration of distributed IoT devices, such as sensors and cameras, that collect traffic data. Using cloud-based machine-learning models, this system can predict traffic patterns, manage congestion, and improve road safety. The paper also discusses the benefits, challenges, and potential solutions for implementing cloud-enabled traffic management in smart cities, emphasizing improved efficiency, reduced costs, and enhanced sustainability.

Keywords:

Cloud computing, Internet of things, Real-time analysis, Urban mobility, Machine learning

References

  1. [1] Li, D., Zuo, Q., & Zhang, Z. (2022). A new assessment method of sustainable water resources utilization considering fairness-efficiency-security: A case study of 31 provinces and cities in China. Sustainable cities and society, 81, 103839. https://doi.org/10.1016/j.scs.2022.103839

  2. [2] Ceder, A. A., & Jiang, Y. (2020). Route guidance ranking procedures with human perception consideration for personalized public transport service. Transportation research part c: emerging technologies, 118, 102667. https://doi.org/10.1016/j.trc.2020.102667

  3. [3] Zanella, A., Bui, N., Castellani, A., Vangelista, L., & Zorzi, M. (2014). Internet of things for smart cities. IEEE internet of things journal, 1(1), 22–32. https://doi.org/10.1109/JIOT.2014.2306328

  4. [4] Gubbi, J., Buyya, R., Marusic, S., & Palaniswami, M. (2013). Internet of things (IoT): A vision, architectural elements, and future directions. Future generation computer systems, 29(7), 1645–1660. https://doi.org/10.1016/j.future.2013.01.010

  5. [5] Botta, A., De Donato, W., Persico, V., & Pescapé, A. (2016). Integration of cloud computing and internet of things: A survey. Future generation computer systems, 56, 684–700. https://doi.org/10.1016/j.future.2015.09.021

  6. [6] Shi, S., Yin, Z., Mei, Z., & Wang, L. (2021). Dark channel based multiframe super-resolution reconstruction. IEEE access, 9, 141693–141702. https://doi.org/10.1109/ACCESS.2021.3120058

  7. [7] Zaini, N., Ean, L. W., Ahmed, A. N., Abdul Malek, M., & Chow, M. F. (2022). PM2. 5 forecasting for an urban area based on deep learning and decomposition method. Scientific reports, 12(1), 17565. https://www.nature.com/articles/s41598-022-21769-1

  8. [8] Alam, T. (2021). Cloud-based IoT applications and their roles in smart cities. Smart cities, 4(3), 1196–1219. https://doi.org/10.3390/smartcities4030064

  9. [9] Haseeb, K., Din, I. U., Almogren, A., Ahmed, I., & Guizani, M. (2021). Intelligent and secure edge-enabled computing model for sustainable cities using green internet of things. Sustainable cities and society, 68, 102779. https://doi.org/10.1016/j.scs.2021.102779

  10. [10] Yusuf, S. A., Khan, A., & Souissi, R. (2024). Vehicle-to-everything (V2X) in the autonomous vehicles domain--A technical review of communication, sensor, and AI technologies for road user safety. Transportation research interdisciplinary perspectives, 23, 100980. https://doi.org/10.1016/j.trip.2023.100980

  11. [11] Bai, L., Wong, W., Xu, P., Liu, P., Chow, A. H. F., Lam, W. H. K., … & Wong, S. C. (2024). Fusion of multi-resolution data for estimating speed-density relationships. Transportation research part c: emerging technologies, 165, 104742. https://doi.org/10.1016/j.trc.2024.104742

  12. [12] Putra, M. A., Harjoko, A., & Wahyono. (2025). A systematic review on vision-based traffic density estimation for intelligent transportation systems. IET intelligent transport systems, 19(1), e70038. https://doi.org/10.1049/itr2.70038

  13. [13] Herrera, J. C., Work, D. B., Herring, R., Ban, X. J., Jacobson, Q., & Bayen, A. M. (2010). Evaluation of traffic data obtained via GPS-enabled mobile phones: The mobile century field experiment. Transportation research part c: emerging technologies, 18(4), 568–583. https://doi.org/10.1016/j.trc.2009.10.006

  14. [14] Zadeh, A., Liang, P. P., & Morency, L. P. (2020). Foundations of multimodal co-learning. Information fusion, 64, 188–193. https://doi.org/10.1016/j.inffus.2020.06.001

  15. [15] Mekki, K., Bajic, E., Chaxel, F., & Meyer, F. (2019). A comparative study of LPWAN technologies for large-scale IoT deployment. ICT express, 5(1), 1–7. https://doi.org/10.1016/j.icte.2017.12.005

  16. [16] Kiran, M., Pouyoul, E., Mercian, A., Tierney, B., Guok, C., & Monga, I. (2018). Enabling intent to configure scientific networks for high performance demands. Future generation computer systems, 79, 205–214. https://doi.org/10.1016/j.future.2017.04.020

  17. [17] Gomes, B., Coelho, J., & Aidos, H. (2023). A survey on traffic flow prediction and classification. Intelligent systems with applications, 20, 200268. https://doi.org/10.1016/j.iswa.2023.200268

  18. [18] Qi, P., Pan, C., Xu, X., Wang, J., Liang, J., & Zhou, W. (2025). A review of dynamic traffic flow prediction methods for global energy-efficient route planning. Sensors, 25(17), 5560. https://doi.org/10.3390/s25175560

  19. [19] Alabdouli, H., Hassan, M. S., & Abdelfatah, A. (2025). Enhancing route guidance with integrated V2X communication and transportation systems: A review. Smart cities, 8(1), 24. https://doi.org/10.3390/smartcities8010024

  20. [20] Singh, N., & Kumar, K. (2022). A review of bus arrival time prediction using artificial intelligence. Wiley interdisciplinary reviews: data mining and knowledge discovery, 12(4), e1457. https://doi.org/10.1002/widm.1457

  21. [21] Teledjieu, I. D., & Shafique, I. (2025). CityPulse: Real-time traffic data analytics and congestion prediction. https://arxiv.org/abs/2506.01971

  22. [22] Koch, L., Brinkmann, T., Wegener, M., Badalian, K., & Andert, J. (2023). Adaptive traffic light control with deep reinforcement learning: An evaluation of traffic flow and energy consumption. IEEE transactions on intelligent transportation systems, 24(12), 15066–15076. https://doi.org/10.1109/TITS.2023.3305548

  23. [23] Veitch, E., & Rhodes, E. (2024). A cross-country comparative analysis of congestion pricing systems: Lessons for decarbonizing transportation. Case studies on transport policy, 15, 101128. https://doi.org/10.1016/j.cstp.2023.101128

  24. [24] Mouradian, C., Naboulsi, D., Yangui, S., Glitho, R. H., Morrow, M. J., & Polakos, P. A. (2017). A comprehensive survey on fog computing: State-of-the-art and research challenges. IEEE communications surveys & tutorials, 20(1), 416–464. https://doi.org/10.1109/COMST.2017.2771153

  25. [25] Dastjerdi, A. V., & Buyya, R. (2016). Fog computing: Helping the internet of things realize its potential. Computer, 49(8), 112–116. https://doi.org/10.1109/MC.2016.245

  26. [26] Zhuang, L., Wang, L., Zhang, Z., & Tsui, K. L. (2018). Automated vision inspection of rail surface cracks: A double-layer data-driven framework. Transportation research part c: emerging technologies, 92, 258–277. https://doi.org/10.1016/j.trc.2018.05.007

  27. [27] Hashem, I. A. T., Chang, V., Anuar, N. B., Adewole, K., Yaqoob, I., Gani, A., … & Chiroma, H. (2016). The role of big data in smart city. International journal of information management, 36(5), 748–758. https://doi.org/10.1016/j.ijinfomgt.2016.05.002

  28. [28] Davis, W. C., & Wang, Z. J. (2015). A mobile retail pos: design and implementation [presentation]. Proceedings of the 2015 workshop on mobile big data (pp. 49–51). https://doi.org/10.1145/2757384.2757391

  29. [29] Chiang, M., & Zhang, T. (2016). Fog and IoT: An overview of research opportunities. IEEE internet of things journal, 3(6), 854–864. https://doi.org/10.1109/JIOT.2016.2584538

  30. [30] Khan, M. A., & Salah, K. (2018). IoT security: Review, blockchain solutions, and open challenges. Future generation computer systems, 82, 395–411. https://doi.org/10.1016/j.future.2017.11.022

  31. [31] Deepak, J. R., Raja, V. K. B., Kavitha, K. R., Reddy, K. G., & Venkat, M. (2021). Microstructure and metallurgical property investigation of welded IRSM 41-97 rail steel joints. Materials today: proceedings, 47, 4827–4832. https://doi.org/10.1016/j.matpr.2021.06.056

  32. [32] Acharya, K., & Ghoshal, D. (2018). Detection of a shadow of animated video frames in RGB Color Space. Procedia computer science, 132, 103–108. https://doi.org/10.1016/j.procs.2018.05.168

  33. [33] Xu, L. Da, He, W., & Li, S. (2014). Internet of things in industries: A survey. IEEE transactions on industrial informatics, 10(4), 2233–2243. https://doi.org/10.1109/TII.2014.2300753

  34. [34] Li, W., Chen, A., Wang, X., Li, T., Penty, R. V, & Liu, X. (2020). Fast-settling two-stage automatic gain control for multi-service fibre-wireless fronthaul systems. IEEE access, 8, 145077–145086. https://doi.org/10.1109/ACCESS.2020.3014974

  35. [35] Gopikrishnan, U., & Jose, R. (2020). DriveCare: A real-time vision based driver drowsiness detection using multiple convolutional neural networks with kernelized correlation filters (MCNN-KCF). 2020 IEEE 5th international conference on computing communication and automation (ICCCA) (pp. 408–413). IEEE. https://doi.org/10.1109/ICCCA49541.2020.9250868

  36. [36] Li, S., Xu, L. Da, & Zhao, S. (2015). The internet of things: A survey. Information systems frontiers, 17, 243–259. https://doi.org/10.1007/s10796-014-9492-7

  37. [37] Al Nuaimi, E., Al Neyadi, H., Mohamed, N., & Al-Jaroodi, J. (2015). Applications of big data to smart cities. Journal of internet services and applications, 6(1), 1–15. https://doi.org/10.1186/s13174-015-0041-5

  38. [38] Zheng, Y., Capra, L., Wolfson, O., & Yang, H. (2014). Urban computing: concepts, methodologies, and applications. ACM transactions on intelligent systems and technology (TIST), 5(3), 1–55. https://doi.org/10.1145/2629592

  39. [39] Chen, B., Pei, X., & Chen, Z. (2019). Research on target detection based on distributed track fusion for intelligent vehicles. Sensors, 20(1), 56. https://doi.org/10.3390/s20010056

  40. [40] Gupta, H., Vahid Dastjerdi, A., Ghosh, S. K., & Buyya, R. (2017). iFogSim: A toolkit for modeling and simulation of resource management techniques in the internet of things, edge and fog computing environments. Software: practice and experience, 47(9), 1275–1296. https://doi.org/10.1002/spe.2509

  41. [41] Ahmed, N. K., Atiya, A. F., Gayar, N. El, & El-Shishiny, H. (2010). An empirical comparison of machine learning models for time series forecasting. Econometric reviews, 29(5–6), 594–621. https://doi.org/10.1080/07474938.2010.481556

  42. [42] Hashem, I. A. T., Yaqoob, I., Anuar, N. B., Mokhtar, S., Gani, A., & Khan, S. U. (2015). The rise of “big data” on cloud computing: Review and open research issues. Information systems, 47, 98–115. https://doi.org/10.1016/j.is.2014.07.006

Published

2025-06-23

How to Cite

Karimi, H., & Goudarzi Karim, R. (2025). Elastic cloud–IoT architecture for smart city traffic management: Performance, energy efficiency, and real-time analytics. Smart City Insights, 2(2), 88-98. https://doi.org/10.22105/sci.v2i2.37

Similar Articles

1-10 of 22

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)